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King Fahd University of Petroleum and Minerals 

College of Computer Science and Engineering 

Information and Computer Science Department 

 

ICS 353: Design and Analysis of Algorithms 

First semester 2016-2017 

Major Exam #1, Sunday, October 23, 2016. 
 

Name:  

 

ID#: 
 

Instructions: 

1. The exam consists of 7 pages, including this page, containing 5 questions. You have 

to answer all 5 questions. 

2. The exam is closed book and closed notes. No calculators or any helping aides are 

allowed. Make sure you turn off your mobile phone and keep it in your pocket if you 

have one.  

3. The maximum number of points for this exam is 100. 

4. You have exactly 90 minutes to finish the exam. 

5. Make sure your answers are readable. 

6. If there is no space on the front of the page, feel free to use the back of the page. 

Make sure you indicate this in order for me not to miss grading it. 

 

Question Number Maximum # of Points Earned  Points 

1 20  

2 20  

3 20  

4 20  

5 20  

Total 100  

 

*. Some Useful Formulas: 
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   ∑ 𝑖. 𝑐𝑖𝑛

𝑖=1 = Θ(1)  for  0 < 𝑐 < 1
                          

2lg 𝑛 = 𝑛
,

 

𝑙𝑜𝑔𝑏𝑎 =
𝑙𝑜𝑔𝑐𝑎

𝑙𝑜𝑔𝑐𝑏
  where 𝑐, 𝑏 ≠ 1                log ab = b log a                 log ab = log a + log b 
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Q1. (20 points)  

a. (8 points) Using the definition of 𝑂() notation, prove that 4𝑛3 + 8𝑛2 + 100𝑛 + 10 

is in 𝑂(𝑛3). 

 

To find 𝑐 > 0 and 𝑛0 ∈ ℕ such that 4𝑛3 + 8𝑛2 + 100𝑛 + 10 ≤ 𝑐𝑛3   ∀𝑛 ≥ 𝑛0. 

Since  

4𝑛3 + 8𝑛2 + 100𝑛 + 10 ≤4𝑛3 + 10𝑛3 + 100𝑛3 + 10𝑛3 = 122𝑛3 ∀𝑛 ≥ 1 

with 𝑐 = 122, 𝑛0 = 1, we can conclude that 4𝑛3 + 8𝑛2 + 100𝑛 + 10 = O(𝑛3). 

 

 

 

 

 

b. (12 points) Express the following function 

𝑓(𝑛) = 𝑛 log 𝑛5 + log2 √𝑛 

       in terms of the -notation in the simplest form. Make sure you prove your answer. 

lim
𝑛→∞

𝑛 log 𝑛5

log2 √𝑛 
= lim

𝑛→∞

5𝑛 log 𝑛

(log √𝑛)(log √𝑛) 
 

= lim
𝑛→∞

5𝑛 log 𝑛

(
1
2 log 𝑛) (

1
2 log 𝑛) 

 

= lim
𝑛→∞

5𝑛 log 𝑛

1
4 log2 𝑛

 

= 20 lim
𝑛→∞

𝑛 log 𝑛

log2 𝑛
 

= 𝑐1 lim
𝑛→∞

𝑛

log 𝑛
            𝑐1 = 20 

= 𝑐1 lim
𝑛→∞

𝑛

ln 𝑛
ln 2

 

= 𝑐2 lim
𝑛→∞

𝑛

ln 𝑛
               𝑐2 = 20 ln 2 

= 𝑐2 lim
𝑛→∞

1

1
𝑛

                  using L'Hospital's Rule 

= 𝑐2 lim
𝑛→∞

𝑛 = ∞ 

Therefore, the numerator ≫ the denominator, and hence 𝑓(𝑛) = Θ(𝑛 log 𝑛). 
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Q2. (20 points)  

a. (15 points) For the following code segments: 
Algorithm SomeCount (int n) { 

1. count = 0; 
2. for (i=1; i<=n; i=i*2) 
3.   for (j=i; j>=1; j--) 
4.      count++; 
} 

 

i. (6 points) Formulate the cost of running the above code in summation form 

(note that it will be equal to the value of count). You may assume that n is a 

power of 2. 

ii. (3 points) Evaluate the summation in part "i". 

iii. (2 points) Express the cost of this code segment in terms of () notation. 

iv. (4 points) Is this algorithm linear, with respect to input size? Clearly justify 

your answer. 

 

i. The values of 𝑖: 1,2, 22, 23, … , 2log 𝑛.  

Consider 𝑟 = log 𝑖. Since 𝑗 ranges from 𝑖 down to 1, the value of count can 

be formulated as  

𝑐𝑜𝑢𝑛𝑡 = ∑ ∑ 1

𝑖

𝑗=1

log 𝑛

𝑟=0

 

ii.  

𝑐𝑜𝑢𝑛𝑡 = ∑ ∑ 1

𝑖

𝑗=1

log 𝑛

𝑟=0

= ∑ 𝑖

log 𝑛

𝑟=0

= ∑ 2𝑟

log 𝑛

𝑟=0

=
2log 𝑛+1 − 1

2 − 1
= 2𝑛 − 1 

 

iii. The cost is Θ(𝑛). 

iv. No. Since we only have one input, 𝑛, the value of count depends on the value 

of n. Hence, the algorithm is exponential with respect to the input size. 
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b. (5 points) Consider following recursive Algorithm: 
1. Algorithm myRecursive(int n, char from, char to, char 

temp){ 

2.   if (n == 1) 
3.      print(from + " --------> " + to); 
4.   else { 
5.      myRecursive(n - 1, from, temp, to); 
6.      print(from + " --------> " + to); 
7.      myRecursive(n - 1, temp, to, from); 
8.   } 
9. } 

Let 𝑇(𝑛) denote the number of times the print statement is executed. 

i. (1 points) What is the value of 𝑇(1)? 

𝑇(1) = 1 

 

ii. (4 points) Derive the recurrence equation describing the value of T(n) for n > 

1. 

𝑇(𝑛) = 2𝑇(𝑛 − 1) + 1 

 

 

 

Q3. (20 points) Consider a max-heap H of size 𝑛 > 2 of distinct elements.  

a. (7 points) What is the maximum number of element comparisons that are needed to 

find the second largest element in H? Clearly justify your answer. 

One comparison. Find the maximum of the children of the root. This will be the 

second largest element. 

 

 

 

 

b. (13 points) What is the minimum number of element comparisons that are needed to 

find the minimum value in the max-heap? Clearly justify your answer by outlining 

the algorithm and analyzing its cost. 

The minimum will be in a leaf. Therefore, the algorithm should linearly scan all the 

leafs and find the minimum. Since the index of the last internal node equals ⌊
𝑛

2
⌋, 

leaves start at index  ⌊
𝑛

2
⌋ + 1 and end at index 𝑛. Hence, the number of element 

comparisons = 𝑛 − (⌊
𝑛

2
⌋ + 1) = 𝑛 − ⌊

𝑛

2
⌋ − 1, which is obviously Θ(𝑛). 
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Q4. (20 points) Consider the following array: 

9 , 13, 17, 12, 11, 19, 18, 16, 14, 15, 22 

 

a. (12 points) Illustrate the operation of Algorithm MAKEHEAP on the above array to 

build a max-heap. (Show the intermediate steps). 

b. (4 points) Show the max-heap after deleting the element with key value 18 from the 

heap H in part "a.". (Show the intermediate steps). 

c. (4 points) Show the max-heap after inserting an element of value 21 into the heap H 

in part "a.". (Show the intermediate steps). 

a.  

 
b.  

 
c.  

 

9 

13 17 

12 11 19 18 

16 14 15 22 

9 

13 17 

16 22 19 18 

12 14 15 11 

9 

22 19 

16 15 17 18 

12 14 13 11 

22 

16 19 

14 15 17 18 

12 9 13 11 

22 

16 19 

14 15 17 11 

12 9 13 18 

22 

16 19 

14 15 17 11 

12 9 13 

22 

16 19 

14 15 17 18 

12 9 13 11 21 

22 

16 21 

14 15 19 18 

12 9 13 11 17 
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Q5. (20 points) Consider the linear search problem. Assume that a key x is to be found in an 

array A of size n, where the probability that the key is found in the first position is 
1

2
, in the 

second position is 
1

3
, in the third position is 

1

9
 and it is equally likely to find the key in the rest of 

the positions of the array. Assume that the key x will always exist in the array.  

a. (3 points) Analyze the best case time complexity of the above algorithm, finding it in 

terms of Θ() notation. 

b. (3 points) Analyze the worst case time complexity of the above algorithm, finding it 

in terms of Θ() notation. 

c. (3 points) Analyze the worst case space complexity of the above algorithm, finding it 

in terms of Θ() notation. 

d. (11 points) Analyze the average case time complexity of the above algorithm, finding 

it in terms of Θ() notation. 

 

a. The best case of linear search occurs when the key is at the first position, requiring 

one element comparison, for a cost of Θ(1). 

b. The worst case of linear search occurs when the key is at the last position, requiring 

𝑛 element comparison, for a cost of Θ(𝑛). 

c. The worst case space complexity of linear search is the same as the best case, which 

only requires an iterator over the array and an integer to hold the position, 

independent from the input size. Hence, it is Θ(1). 

d. Probability of the key being in any position other than the first, second or third is 

equal to 
(1−

1

2
−

1

3
−

1

9
)

𝑛−3
=

1

18(𝑛−3)
. Hence, the average case time complexity is equal to 

∑
1

18(𝑛 − 3)
× 𝑖

𝑛

𝑖=4

=
1

18(𝑛 − 3)
∑ 𝑖

𝑛

𝑖=4

 

=
1

18(𝑛 − 3)
× (∑ 𝑖

𝑛

𝑖=1

− ∑ 𝑖

3

𝑖=1

) 

=
1

18(𝑛 − 3)
× (

𝑛(𝑛 + 1)

2
−

3 × 4

2
) 

=
1

18(𝑛 − 3)
(

𝑛(𝑛 + 1)

2
− 6) 

= Θ(𝑛) 
 

 

 


